Run this notebook

Use Livebook to open this notebook and explore new ideas.

It is easy to get started, on your machine or the cloud.

Click below to open and run it in your Livebook at .

(or change your Livebook location)

# Complex models ```elixir Mix.install([ {:axon, ">= 0.5.0"}, {:kino, ">= 0.9.0"} ]) ``` <!-- livebook:{"output":true} --> ``` :ok ``` ## Creating more complex models Not all models you'd want to create fit cleanly in the *sequential* paradigm. Some models require a more flexible API. Fortunately, because Axon models are just Elixir data structures, you can manipulate them and decompose architectures as you would any other Elixir program: ```elixir input = Axon.input("data") x1 = input |> Axon.dense(32) x2 = input |> Axon.dense(64) |> Axon.relu() |> Axon.dense(32) out = Axon.add(x1, x2) ``` <!-- livebook:{"output":true} --> ``` #Axon< inputs: %{"data" => nil} outputs: "add_0" nodes: 7 > ``` In the snippet above, your model branches `input` into `x1` and `x2`. Each branch performs a different set of transformations; however, at the end the branches are merged with an `Axon.add/3`. You might sometimes see layers like `Axon.add/3` called *combinators*. Really they're just layers that operate on multiple Axon models at once - typically to merge some branches together. `out` represents your final Axon model. If you visualize this model, you can see the full effect of the branching in this model: ```elixir template = Nx.template({2, 8}, :f32) Axon.Display.as_graph(out, template) ``` <!-- livebook:{"output":true} --> ```mermaid graph TD; 3[/"data (:input) {2, 8}"/]; 4["dense_0 (:dense) {2, 32}"]; 5["dense_1 (:dense) {2, 64}"]; 6["relu_0 (:relu) {2, 64}"]; 7["dense_2 (:dense) {2, 32}"]; 8["container_0 (:container) {{2, 32}, {2, 32}}"]; 9["add_0 (:add) {2, 32}"]; 8 --> 9; 7 --> 8; 4 --> 8; 6 --> 7; 5 --> 6; 3 --> 5; 3 --> 4; ``` And you can use `Axon.build/2` on `out` as you would any other Axon model: ```elixir {init_fn, predict_fn} = Axon.build(out) ``` <!-- livebook:{"output":true} --> ``` {#Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>, #Function<135.109794929/2 in Nx.Defn.Compiler.fun/2>} ``` ```elixir params = init_fn.(template, %{}) predict_fn.(params, Nx.iota({2, 8}, type: :f32)) ``` <!-- livebook:{"output":true} --> ``` #Nx.Tensor< f32[2][32] [ [-4.283246040344238, 1.8983498811721802, 3.697357654571533, -4.720174789428711, 4.1636152267456055, 1.001131534576416, -0.7027540802955627, -3.7821826934814453, 0.027841567993164062, 9.267499923706055, 3.33616304397583, -1.5465859174728394, 8.983413696289062, 3.7445120811462402, 2.2405576705932617, -3.61336350440979, -1.7320983409881592, 0.5740477442741394, -0.22006472945213318, -0.1806044578552246, 1.1092393398284912, -0.29313594102859497, -0.41948509216308594, 3.526411533355713, -0.9127179384231567, 1.8373844623565674, 1.1746022701263428, -0.6885149478912354, -1.4326229095458984, -1.3498257398605347, -5.803186416625977, 1.5204020738601685], [-15.615742683410645, 6.555544853210449, 7.033155918121338, -12.33556842803955, 14.105436325073242, -4.230871200561523, 5.985136032104492, -8.445676803588867, 5.383096694946289, 23.413570404052734, 0.8907639980316162, -1.400709629058838, 19.19326400756836, 13.784171104431152, 9.641424179077148, -8.407038688659668, -5.688483238220215, 4.383636474609375, ...] ] > ``` As your architectures grow in complexity, you might find yourself reaching for better abstractions to organize your model creation code. For example, PyTorch models are often organized into `nn.Module`. The equivalent of an `nn.Module` in Axon is a regular Elixir function. If you're translating models from PyTorch to Axon, it's natural to create one Elixir function per `nn.Module`. You should write your models as you would write any other Elixir code - you don't need to worry about any framework specific constructs: ```elixir defmodule MyModel do def model() do Axon.input("data") |> conv_block() |> Axon.flatten() |> dense_block() |> dense_block() |> Axon.dense(1) end defp conv_block(input) do residual = input x = input |> Axon.conv(3, padding: :same) |> Axon.mish() x |> Axon.add(residual) |> Axon.max_pool(kernel_size: {2, 2}) end defp dense_block(input) do input |> Axon.dense(32) |> Axon.relu() end end ``` <!-- livebook:{"output":true} --> ``` {:module, MyModel, <<70, 79, 82, 49, 0, 0, 8, ...>>, {:dense_block, 1}} ``` ```elixir model = MyModel.model() ``` <!-- livebook:{"output":true} --> ``` #Axon< inputs: %{"data" => nil} outputs: "dense_2" nodes: 12 > ``` ```elixir template = Nx.template({1, 28, 28, 3}, :f32) Axon.Display.as_graph(model, template) ``` <!-- livebook:{"output":true} --> ```mermaid graph TD; 10[/"data (:input) {1, 28, 28, 3}"/]; 11["conv_0 (:conv) {1, 28, 28, 3}"]; 12["mish_0 (:mish) {1, 28, 28, 3}"]; 13["container_0 (:container) {{1, 28, 28, 3}, {1, 28, 28, 3}}"]; 14["add_0 (:add) {1, 28, 28, 3}"]; 15["max_pool_0 (:max_pool) {1, 14, 14, 3}"]; 16["flatten_0 (:flatten) {1, 588}"]; 17["dense_0 (:dense) {1, 32}"]; 18["relu_0 (:relu) {1, 32}"]; 19["dense_1 (:dense) {1, 32}"]; 20["relu_1 (:relu) {1, 32}"]; 21["dense_2 (:dense) {1, 1}"]; 20 --> 21; 19 --> 20; 18 --> 19; 17 --> 18; 16 --> 17; 15 --> 16; 14 --> 15; 13 --> 14; 10 --> 13; 12 --> 13; 11 --> 12; 10 --> 11; ```
See source

Have you already installed Livebook?

If you already installed Livebook, you can configure the default Livebook location where you want to open notebooks.
Livebook up Checking status We can't reach this Livebook (but we saved your preference anyway)
Run notebook

Not yet? Install Livebook in just a minute

Livebook is open source, free, and ready to run anywhere.

Run on your machine

with Livebook Desktop

Run in the cloud

on select platforms

To run on Linux, Docker, embedded devices, or Elixir’s Mix, check our README.

PLATINUM SPONSORS
SPONSORS
Code navigation with go to definition of modules and functions Read More ×