Run this notebook

Use Livebook to open this notebook and explore new ideas.

It is easy to get started, on your machine or the cloud.

Click below to open and run it in your Livebook at .

(or change your Livebook location)

# OpenaiEx User Guide ```elixir Mix.install([ {:openai_ex, "~> 0.9.4"}, # {:openai_ex, path: Path.join(__DIR__, "..")}, {:kino, "~> 0.15.3"} ]) ``` ## Introduction `OpenaiEx` is an Elixir library that provides a community-maintained OpenAI API client. Portions of this project were developed with assistance from ChatGPT 3.5 and 4, as well as Claude 3 Opus and Claude 3.5 Sonnet. However, every line of code is human curated (by me 😇). At this point, all API endpoints and features (as of May 1, 2024) are supported, including the **Assistants API Beta 2 with Run streaming**, DALL-E-3, Text-to-Speech, the **tools support** in chat completions, and the **streaming version** of the chat completion endpoint. Streaming request **cancellation** is also supported. Configuration of Finch pools and API base url are supported. There are some differences compared to other elixir openai wrappers. * I tried to faithfully mirror the naming/structure of the official python api. For example, content that is already in memory can be uploaded as part of a request, it doesn't have to be read from a file at a local path. * I was developing for a livebook use-case, so I don't have any config, only environment variables. * Streaming API versions, with request cancellation, are supported. * The underlying transport is finch, rather than httpoison * 3rd Party (including local) LLMs with an OpenAI proxy, as well as the **Azure OpenAI API**, are considered legitimate use cases. To learn how to use OpenaiEx, you can refer to the relevant parts of the official OpenAI API reference documentation, which we link to throughout this document. This file is an executable Livebook, which means you can interactively run and modify the code samples provided. We encourage you to open it in Livebook and try out the code for yourself! ## Installation You can install OpenaiEx using Mix: ### In Livebook Add the following code to the first connection cell: <!-- livebook:{"force_markdown":true} --> ```elixir Mix.install( [ {:openai_ex, "~> 0.9.4"} ] ) ``` ### In a Mix Project Add the following to your mix.exs file: <!-- livebook:{"force_markdown":true} --> ```elixir def deps do [ {:openai_ex, "~> 0.9.4"} ] end ``` ## Authentication To authenticate with the OpenAI API, you will need an API key. We recommend storing your API key in an environment variable. Since we are using Livebook, we can store this and other environment variables as [Livebook Hub Secrets](https://news.livebook.dev/hubs-and-secret-management---launch-week-1---day-3-3tMaJ2). ```elixir apikey = System.fetch_env!("LB_OPENAI_API_KEY") openai = OpenaiEx.new(apikey) ``` You can also specify an organization if you are a member of more than one: ```elixir # organization = System.fetch_env!("LB_OPENAI_ORGANIZATION") # openai = OpenaiEx.new(apikey, organization) ``` For more information on authentication, see the [OpenAI API Authentication reference](https://platform.openai.com/docs/api-reference/authentication). ## Configuration There are a few places where configuration seemed necessary. ### Receive Timeout The default receive timeout is 15 seconds. If you are seeing longer latencies, you can override the default with ```elixir # set receive timeout to 45 seconds openai = OpenaiEx.new(apikey) |> OpenaiEx.with_receive_timeout(45_000) ``` ### Finch Instance In production scenarios where you want to explicitly tweak the Finch pool, you can create a new Finch instance using <!-- livebook:{"force_markdown":true} --> ```elixir Finch.start_link( name: MyConfiguredFinch, pools: ... ) ``` You can use this instance of Finch (instead of the default `OpenaiEx.Finch`) by setting the finch name <!-- livebook:{"force_markdown":true} --> ```elixir openai_with_custom_finch = openai |> with_finch_name(MyConfiguredFinch) ``` <!-- livebook:{"break_markdown":true} --> ### Base Url There are times, such as when using a local LLM (like Ollama) with an OpenAI proxy, when you need to reset the base url of the API. This is generally only applicable for chat and chat completion endpoints and can be accomplished by ```elixir # in this example, our development livebook server is running in a docker dev container while # the local llm is running on the host machine proxy_openai = OpenaiEx.new(apikey) |> OpenaiEx.with_base_url("http://host.docker.internal:8000/v1") ``` ### Using an LLM gateway (e.g. [Portkey](https://portkey.ai/)) LLM gateways are used to provide a virtual interface to multiple LLM providers behind a single API endpoint. Generally they work on the basis of additional HTTP headers being added that specify the model to use, the provider to use, and possibly other parameters. For example, to configure your client for openai using the portkey gateway, you would do this: ```elixir openai_api_key = "an-openai-api-key" portkey_api_key = "a-portkey-api-key" OpenaiEx.new(openai_api_key) |> OpenaiEx.with_base_url("https://api.portkey.ai/v1") |> OpenaiEx.with_additional_headers(%{"x-portkey-api-key"=>portkey_api_key, "x-portkey-provider"=>"openai"}) ``` similarly, for Anthropic, you would do this: ```elixir anthropic_api_key = "some-anthropic-api-key" OpenaiEx.new(anthropic_api_key) |> OpenaiEx.with_base_url("https://api.portkey.ai/v1") |> OpenaiEx.with_additional_headers(%{"x-portkey-api-key"=>portkey_api_key, "x-portkey-provider"=>"anthropic"}) ``` ### Azure OpenAI The Azure OpenAI API replicates the Completion, Chat Completion and Embeddings endpoints from OpenAI. However, it modifies the base URL as well as the endpoint path, and adds a parameter to the URL query. These modifications are accommodated with the following calls: for non Entra Id <!-- livebook:{"force_markdown":true} --> ```elixir openai = OpenaiEx._for_azure(azure_api_id, resource_name, deployment_id, api_version) ``` and for Entra Id <!-- livebook:{"force_markdown":true} --> ```elixir openai = OpenaiEx.new(entraId) |> OpenaiEx._for_azure(resource_name, deployment_id, api_version) ``` These methods will be supported as long as the Azure version does not deviate too far from the base OpenAI API. ## Error Handling OpenaiEx provides robust error handling to support both interactive and non-interactive usage. There are two main ways to handle errors: ### Error Tuples Most functions in OpenaiEx return `:ok` and `:error` tuples. This allows for pattern matching and explicit error handling: <!-- livebook:{"force_markdown":true} --> ```elixir case OpenaiEx.Chat.Completions.create(openai, chat_req) do {:ok, response} -> # Handle successful response {:error, error} -> # Handle error end ``` ### Exceptions For scenarios where you prefer exceptions, OpenaiEx provides bang (!) versions of functions that raise exceptions on errors: <!-- livebook:{"force_markdown":true} --> ```elixir try do response = OpenaiEx.Chat.Completions.create!(openai, chat_req) # Handle successful response rescue e in OpenaiEx.Error -> # Handle exception end ``` ### Error Types OpenaiEx closely follows the error types defined in the official OpenAI Python library. For a comprehensive list and description of these error types, please refer to the [OpenAI API Error Types documentation](https://platform.openai.com/docs/guides/error-codes/api-errors). In addition to these standard error types, OpenaiEx defines two specific error types for handling streaming operations: * `SSETimeoutError`: Raised when a streaming response times out * `SSECancellationError`: Raised when a user initiates a stream cancellation For more details on specific error types and their attributes, refer to the `OpenaiEx.Error` module documentation. ## Model ### List Models To list all available models, use the [`Model.list()`](https://platform.openai.com/docs/api-reference/models/list) function: ```elixir alias OpenaiEx.Models openai |> Models.list() ``` ### Retrieve Models To retrieve information about a specific model, use the [`Model.retrieve()`](https://platform.openai.com/docs/api-reference/models/retrieve) function: ```elixir openai |> Models.retrieve("gpt-4o-mini") ``` For more information on using models, see the [OpenAI API Models reference](https://platform.openai.com/docs/api-reference/models). ## Chat Completion To generate a chat completion, you need to define a chat completion request structure using the `ChatCompletion.new()` function. This function takes several parameters, such as the model ID and a list of chat messages. We have a module `ChatMessage` which helps create messages in the [chat format](https://platform.openai.com/docs/guides/chat/introduction). ```elixir alias OpenaiEx.Chat alias OpenaiEx.ChatMessage alias OpenaiEx.MsgContent chat_req = Chat.Completions.new( model: "gpt-4o-mini", messages: [ ChatMessage.user( "Give me some background on the elixir language. Why was it created? What is it used for? What distinguishes it from other languages? How popular is it?" ) ] ) ``` You are able to pass images to the API by creating a message. ```elixir ChatMessage.user( MsgContent.image_url( "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/images/starmask.png" ) ) ``` You can generate a chat completion using the [`ChatCompletion.create()`](https://platform.openai.com/docs/api-reference/chat/completions/create) function: ```elixir {:ok, chat_response} = openai |> Chat.Completions.create(chat_req) ``` For a more in-depth example of `ChatCompletion`, check out the [Deeplearning.AI OrderBot Livebook](https://hexdocs.pm/openai_ex/dlai_orderbot.html). You can also call the endpoint and have it stream the response. This returns the result as a series of tokens, which have to be put together in code. To use the stream option, call the `ChatCompletion.create()` function with `stream: true` (and `stream_options` set to `{%include_usage: true}` to recieve usage information) ```elixir {:ok, chat_stream} = openai |> Chat.Completions.create(chat_req |> Map.put(:stream_options, %{include_usage: true}), stream: true) IO.puts(inspect(chat_stream)) IO.puts(inspect(chat_stream.task_pid)) chat_stream.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn x -> IO.puts(inspect(x)) end) ``` ### Canceling a streaming request The `chat_stream.task_pid` can be used in conjunction with `OpenaiEx.HttpSse.cancel_request/1` to cancel an ongoing request. You need to check the return `chat_stream.status` field. In case the status is *not* 2XX, the `body_stream` and `task_pid` fields are not available. Instead, an `error` field will be returned. For example ```elixir bad_req = Chat.Completions.new(model: "code-llama", messages: []) {:error, err_resp} = openai |> Chat.Completions.create(bad_req, stream: true) ``` For a detailed example of the use of the streaming `ChatCompletion` API, **including how to cancel an ongoing request**, check out [Streaming Orderbot](https://hexdocs.pm/openai_ex/streaming_orderbot.html), the streaming equivalent of the prior example. ### Stream Timeout While OpenAI's official API implementation typically doesn't require explicit timeout handling for streams, some third-party implementations of the OpenAI API may benefit from custom timeout settings. OpenaiEx provides a way to set a stream-specific timeout to handle these cases. You can set a stream-specific timeout using the `with_stream_timeout` function: ```elixir # Set a stream timeout of 30 seconds openai_with_timeout = openai |> OpenaiEx.with_stream_timeout(30_000) ``` This is particularly useful when working with third-party OpenAI API implementations that may have different performance characteristics than the official API. ### Exception Handling for Streams When working with streams, it's important to handle potential exceptions that may occur during stream processing. OpenaiEx uses a custom exception type for stream-related errors. Here's how you can handle these exceptions: ```elixir alias OpenaiEx.Error process_stream = fn openai, request -> response = Chat.Completions.create!(openai, request, stream: true) try do response.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn chunk -> # Process each chunk here IO.inspect(chunk) end) rescue e in OpenaiEx.Error -> case e do %{kind: :sse_cancellation} -> IO.puts("Stream was canceled") {:error, :canceled, e.message} %{kind: :sse_timeout_error} -> IO.puts("Timeout on SSE stream") {:error, :timeout, e.message} _ -> IO.puts("Unknown error occurred") {:error, :unknown, e.message} end e -> IO.puts("An unexpected error occurred") {:error, :unexpected, Exception.message(e)} end end # Usage chat_req = Chat.Completions.new( model: "gpt-4o-mini", messages: [ChatMessage.user("Tell me a short story about a brave knight")], max_tokens: 500 ) # Use the OpenaiEx struct with custom stream timeout result = process_stream.(openai_with_timeout, chat_req) case result do {:error, type, message} -> IO.puts("Error type: #{type}") IO.puts("Error message: #{message}") _ -> IO.puts("Stream processed successfully") end ``` In this example, we define a `process_stream` function that handles different types of stream exceptions: * `:canceled`: The stream was canceled. We return an error tuple. * `:timeout`: The stream timed out. We return an error tuple. * Any other `OpenaiEx.Exception`: We treat it as an unknown error. * Any other exception: We treat it as an unexpected error. This approach allows you to gracefully handle different types of stream-related errors and take appropriate actions. For more information on generating chat completions, see the [OpenAI API Chat Completions reference](https://platform.openai.com/docs/api-reference/chat). ### Function(Tool) Calling In OpenAI's `ChatCompletion` endpoint, you can use the function calling feature to call a custom function and pass its result as part of the conversation. Here's an example of how to use the function calling feature: First, we set up the function specification and completion request. The function specification defines the name, description, and parameters of the function we want to call. In this example, we define a function called `get_current_weather` that takes a `location` parameter and an optional `unit` parameter. The completion request includes the function specification, the conversation history, and the model we want to use. ```elixir tool_spec = Jason.decode!(""" {"type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } } """) rev_msgs = [ ChatMessage.user("What's the weather like in Boston today?") ] fn_req = Chat.Completions.new( model: "gpt-4o-mini", messages: rev_msgs |> Enum.reverse(), tools: [tool_spec], tool_choice: "auto" ) ``` Next, we call the OpenAI endpoint to get a response that includes the function call. ```elixir {:ok, fn_response} = openai |> Chat.Completions.create(fn_req) ``` We extract the function call from the response and call the appropriate function with the given parameters. In this example, we define a map of functions that maps function names to their implementations. We then use the function name and arguments from the function call to look up the appropriate function and call it with the given parameters. ```elixir fn_message = fn_response["choices"] |> Enum.at(0) |> Map.get("message") tool_call = fn_message |> Map.get("tool_calls") |> List.first() tool_id = tool_call |> Map.get("id") fn_call = tool_call |> Map.get("function") functions = %{ "get_current_weather" => fn location, unit -> %{ "location" => location, "temperature" => "72", "unit" => unit, "forecast" => ["sunny", "windy"] } |> Jason.encode!() end } fn_name = fn_call["name"] fn_args = fn_call["arguments"] |> Jason.decode!() location = fn_args["location"] unit = unless is_nil(fn_args["unit"]), do: fn_args["unit"], else: "fahrenheit" fn_value = functions[fn_name].(location, unit) ``` We then pass the returned value back to the ChatCompletion endpoint with the conversation history to that point to get the final response. ```elixir latest_msgs = [ChatMessage.tool(tool_id, fn_name, fn_value) | [fn_message | rev_msgs]] fn_req_2 = Chat.Completions.new( model: "gpt-4o-mini", messages: latest_msgs |> Enum.reverse() ) {:ok, fn_response_2} = openai |> Chat.Completions.create(fn_req_2) ``` The final response includes the result of the function call integrated into the conversation. ### Storing and Managing Chat Completions OpenAI allows storing chat completions for later retrieval. This is useful for conversation history, auditing, or analytics purposes. #### Store a Chat Completion To store a chat completion, include `store: true` in your request: ```elixir stored_chat_req = Chat.Completions.new( model: "gpt-4o-mini", messages: [ ChatMessage.user("Explain quantum computing briefly") ], store: true ) {:ok, stored_completion} = openai |> Chat.Completions.create(stored_chat_req) completion_id = stored_completion["id"] ``` #### Retrieve a Stored Chat Completion Use [`Chat.Completions.retrieve()`](https://platform.openai.com/docs/api-reference/chat/get) to fetch a previously stored chat completion: ```elixir {:ok, retrieved_completion} = openai |> Chat.Completions.retrieve(completion_id: completion_id) ``` #### Get Messages from a Chat Completion To access the messages in a stored chat completion, use [`Chat.Completions.messages_list()`](https://platform.openai.com/docs/api-reference/chat/getMessages): ```elixir {:ok, messages} = openai |> Chat.Completions.messages_list(completion_id) ``` #### List Stored Chat Completions To get a list of all your stored chat completions, use [`Chat.Completions.list()`](https://platform.openai.com/docs/api-reference/chat/list): ```elixir {:ok, completions_list} = openai |> Chat.Completions.list() ``` You can filter by metadata, model, or use pagination parameters: ```elixir {:ok, filtered_completions} = openai |> Chat.Completions.list( metadata: %{project: "research"}, model: "gpt-4o-mini", limit: 10, order: "desc" ) ``` #### Update a Chat Completion You can update the metadata of a stored chat completion using [`Chat.Completions.update()`](https://platform.openai.com/docs/api-reference/chat/update): ```elixir {:ok, updated_completion} = openai |> Chat.Completions.update( completion_id: completion_id, metadata: %{category: "technical", reviewed: "true"} ) ``` #### Delete a Chat Completion To remove a stored chat completion, use [`Chat.Completions.delete()`](https://platform.openai.com/docs/api-reference/chat/delete): ```elixir {:ok, delete_result} = openai |> Chat.Completions.delete(completion_id: completion_id) ``` For more information on managing chat completions, see the [OpenAI API Chat reference](https://platform.openai.com/docs/api-reference/chat). ## Responses ```elixir alias OpenaiEx.Responses ``` The Responses API combines features of Chat Completions and Assistants, providing a streamlined way to interact with OpenAI models. It supports single-turn and multi-turn conversations, tool use (including built-in tools), and optional server-side state management. It is the recommended approach for building applications that would previously have used the Assistants API, which will be sunset in the first half of 2026. ### Create a Response Use [`Responses.create()`](https://platform.openai.com/docs/api-reference/responses/create) to generate a response. You can provide a simple prompt or a list of `ChatMessage` structs for multi-turn conversations. The `store: true` option enables server-side state management. First, a simple example with a single prompt: ```elixir response_req = %{ model: "gpt-4o-mini", input: "Explain the theory of relativity.", store: true # Optional: Enables state management } {:ok, response} = openai |> Responses.create(response_req) ``` Next, a multi-turn example using `ChatMessage` structs: ```elixir response_req2 = %{ model: "gpt-4o-mini", input: [ ChatMessage.user("What is the capital of France?"), ChatMessage.assistant("Paris."), ChatMessage.user("And what is the capital of Germany?") ], store: true } {:ok, response2} = openai |> Responses.create(response_req2) ``` ### Streaming Responses The Responses API supports streaming, activated by passing `stream: true` to the `create` function. This returns the result as a series of semantic events, which can be processed and displayed as they arrive. Here's a simple example that prints each event: ```elixir streaming_req = %{ model: "gpt-4o-mini", input: "Tell me a 300 word story about a cat.", store: true # Streaming works with or without storing the response } {:ok, stream} = openai |> Responses.create(streaming_req, stream: true) stream.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn event -> IO.puts(inspect(event)) end) ``` Here's a more detailed example that demonstrates how to handle different event types using pattern matching: ```elixir streaming_req = %{ model: "gpt-4o-mini", input: "Tell me a 500 word story about a cat.", store: true # Streaming works with or without storing the response } {:ok, stream} = openai |> Responses.create(streaming_req, stream: true) stream.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn event -> case event do %{data: data, event: "response.created"} -> # Initial response creation. Contains metadata. IO.puts("Response Created: #{inspect(data)}") %{data: data, event: "response.in_progress"} -> # The response is still being generated. IO.puts("Response In Progress: #{inspect(data)}") %{data: data, event: "response.output_item.added"} -> # An output item (e.g. text, tool call) was added to the response IO.puts("Output Item Added: #{inspect(data)}") %{data: data, event: "response.content_part.added"} -> # A content part was added (e.g. a chunk of text for a text output item.) IO.puts("Content Part Added: #{inspect(data)}") %{data: %{"delta" => delta}, event: "response.output_text.delta"} -> # Text delta (a chunk of text). Write this to the console/UI. IO.write(delta) %{data: data, event: "response.output_text.done"} -> # The text output is complete. IO.puts("\nOutput Text Done: #{inspect(data)}") %{data: data, event: "response.content_part.done"} -> # A content part is done (e.g., end of a text chunk) IO.puts("Content Part Done: #{inspect(data)}") %{data: data, event: "response.output_item.done"} -> # An output item is done (e.g. text generation or tool call) IO.puts("Output Item Done: #{inspect(data)}") %{data: data, event: "response.completed"} -> # The entire response is complete. IO.puts("\nResponse Completed: #{inspect(data)}") other -> # Handle other event types. See API reference for full list. IO.puts("Other Event: #{inspect(other)}") end end) ``` ### Streaming with Tool Calling Streaming also works when using tools. The stream will include events related to tool usage, such as `response.output_item.added` when a tool call is initiated and `response.output_tool_call.*` events for the tool call's progress and results. Here's an example using the built-in `web_search_preview` tool, demonstrating how to handle tool-related events in the stream: ```elixir streaming_req_with_tool = %{ model: "gpt-4o-mini", input: "What's the latest news on the James Webb Telescope?", tools: [%{type: "web_search_preview"}], store: true } {:ok, stream} = openai |> Responses.create(streaming_req_with_tool, stream: true) stream.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn event -> case event do %{data: data, event: "response.created"} -> IO.puts("Response Created: #{inspect(data)}") %{data: data, event: "response.in_progress"} -> IO.puts("Response In Progress: #{inspect(data)}") %{data: data, event: "response.output_item.added"} -> IO.puts("Output Item Added: #{inspect(data)}") %{data: data, event: "response.content_part.added"} -> IO.puts("Content Part Added: #{inspect(data)}") %{data: %{"delta" => delta}, event: "response.output_text.delta"} -> IO.write(delta) %{data: data, event: "response.output_text.done"} -> IO.puts("\nOutput Text Done: #{inspect(data)}") %{data: data, event: "response.content_part.done"} -> IO.puts("Content Part Done: #{inspect(data)}") %{data: data, event: "response.output_item.done"} -> IO.puts("Output Item Done: #{inspect(data)}") %{data: data, event: "response.completed"} -> IO.puts("\nResponse Completed: #{inspect(data)}") %{data: data, event: "response.output_tool_call.started"} -> IO.puts("Tool Call Started: #{inspect(data)}") %{data: data, event: "response.output_tool_call.in_progress"} -> IO.puts("Tool Call In Progress: #{inspect(data)}") %{data: data, event: "response.output_tool_call.completed"} -> IO.puts("Tool Call Completed: #{inspect(data)}") %{data: data, event: "response.output_tool_call.failed"} -> IO.puts("Tool Call Failed: #{inspect(data)}") %{ data: %{ "index" => index, "id" => id, "type" => type, "web_search_preview" => %{"query" => query} }, event: "response.output_tool_call.delta" } -> IO.puts( "Tool Call Delta (index=#{index}, id=#{id}, type=#{type}, query=#{query})" ) other -> # Handle other event types. IO.puts("Other Event: #{inspect(other)}") end end) ``` This example shows how to handle `response.output_tool_call.*` events to track the progress of tool calls within the stream, specifically for the `web_search_preview` tool. ### Retrieve a Response If `store` was set to `true`, you can retrieve the full response object (including conversation history) using [`Responses.retrieve()`](https://platform.openai.com/docs/api-reference/responses/get). Response objects are automatically deleted after 30 days. ```elixir response_id = response["id"] {:ok, retrieved_response} = openai |> Responses.retrieve(response_id: response_id) # With optional parameters {:ok, retrieved_response} = openai |> Responses.retrieve([ response_id: response_id, include: ["output[*].file_search_call.search_results", "output[*].web_search_call.search_results", "file_search_call.results", "web_search_call.results", "message.input_image.image_url"] ]) ``` ### List Input Items from a Response To access the input items from a stored response, use [`Responses.input_items_list()`](https://platform.openai.com/docs/api-reference/responses/input-items): ```elixir {:ok, input_items} = openai |> Responses.input_items_list([ response_id: response_id ]) ``` You can paginate through large input lists: ```elixir {:ok, input_items} = openai |> Responses.input_items_list([ response_id: response_id ]) # If there are more items and we want to paginate if input_items["has_more"] do # Use the last_id from the first request to get the next page last_id = input_items["last_id"] {:ok, next_page_items} = openai |> Responses.input_items_list([ response_id: response_id, limit: 10, after: last_id, order: "desc" ]) IO.puts(next_page_items) end ``` ### Delete a Response To remove a stored response, use [`Responses.delete()`](https://platform.openai.com/docs/api-reference/responses/delete): ```elixir {:ok, delete_result} = openai |> Responses.delete(response_id: response_id) ``` This allows you to clean up stored responses that are no longer needed. For more information on the Responses API, see the [OpenAI API Responses Reference](https://platform.openai.com/docs/api-reference/responses). ## Image ### Generate Image We define the image creation request structure using the `Image.new` function ```elixir alias OpenaiEx.Images img_req = Images.Generate.new(prompt: "An adorable baby sea otter", size: "256x256", n: 1) ``` Then call the [`Image.create()`](https://platform.openai.com/docs/api-reference/images/create) function to generate the images. ```elixir {:ok, img_response} = openai |> Images.generate(img_req) ``` For more information on generating images, see the [OpenAI API Image reference](https://platform.openai.com/docs/api-reference/images). #### Fetch the generated images With the information in the image response, we can fetch the images from their URLs ```elixir fetch_blob = fn url -> Finch.build(:get, url) |> Finch.request!(OpenaiEx.Finch) |> Map.get(:body) end ``` ```elixir fetched_images = img_response["data"] |> Enum.map(fn i -> i["url"] |> fetch_blob.() end) ``` #### View the generated images Finally, we can render the images using Kino ```elixir fetched_images |> Enum.map(fn r -> r |> Kino.Image.new("image/png") |> Kino.render() end) ``` ```elixir img_to_expmt = fetched_images |> List.first() ``` ### Edit Image We define an image edit request structure using the `Images.Edit.new()` function. This function requires an image and a mask. For the image, we will use the one that we received. Let's load the mask from a URL. ```elixir # if you're having problems downloading raw github content, you may need to manually set your DNS server to "8.8.8.8" (google) star_mask = fetch_blob.( "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/images/starmask.png" ) # star_mask = OpenaiEx.new_file(path: Path.join(__DIR__, "../assets/images/starmask.png")) ``` Set up the image edit request with image, mask and prompt. ```elixir img_edit_req = Images.Edit.new( image: img_to_expmt, mask: star_mask, size: "256x256", prompt: "Image shows a smiling Otter" ) ``` We then call the [`Image.create_edit()`]() function ```elixir {:ok, img_edit_response} = openai |> Images.edit(img_edit_req) ``` and view the result ```elixir img_edit_response["data"] |> Enum.map(fn i -> i["url"] |> fetch_blob.() |> Kino.Image.new("image/png") |> Kino.render() end) ``` ### Image Variations We define an image variation request structure using the `Images.Variation.new()` function. This function requires an image. ```elixir img_var_req = Images.Variation.new(image: img_to_expmt, size: "256x256") ``` Then call the [`Image.create_variation()`](https://platform.openai.com/docs/api-reference/images/create-variation) function to generate the images. <!-- livebook:{"break_markdown":true} --> ### ```elixir {:ok, img_var_response} = openai |> Images.create_variation(img_var_req) ``` ```elixir img_var_response["data"] |> Enum.map(fn i -> i["url"] |> fetch_blob.() |> Kino.Image.new("image/png") |> Kino.render() end) ``` For more information on images variations, see the [OpenAI API Image Variations reference](https://platform.openai.com/docs/api-reference/images/create-variation). ## Embedding Define the embedding request structure using `Embedding.new`. ```elixir alias OpenaiEx.Embeddings emb_req = Embeddings.new( model: "text-embedding-ada-002", input: "The food was delicious and the waiter..." ) ``` Then call the [`Embedding.create()`]() function. ```elixir {:ok, emb_response} = openai |> Embeddings.create(emb_req) ``` For more information on generating embeddings, see the [OpenAI API Embedding reference](https://platform.openai.com/docs/api-reference/embeddings/create) ## Audio ```elixir alias OpenaiEx.Audio ``` ### Create speech <!-- livebook:{"break_markdown":true} --> For text to speech, we create an `Audio.Speech` request structure as follows ```elixir speech_req = Audio.Speech.new( model: "tts-1", voice: "alloy", input: "The quick brown fox jumped over the lazy dog", response_format: "mp3" ) ``` We then call the [`Audio.Speech.create()`](https://platform.openai.com/docs/api-reference/audio/createSpeech) function to create the audio response ```elixir {:ok, speech_response} = openai |> Audio.Speech.create(speech_req) ``` We can play the response using the `Kino` Audio widget. ```elixir speech_response |> Kino.Audio.new(:mp3) ``` ### Create transcription To define an audio transcription request structure, we need to create a file parameter using `Audio.File.new()`. ```elixir # if you're having problems downloading raw github content, you may need to manually set your DNS server to "8.8.8.8" (google) audio_url = "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/transcribe.mp3" audio_file = OpenaiEx.new_file(name: audio_url, content: fetch_blob.(audio_url)) # audio_file = OpenaiEx.new_file(path: Path.join(__DIR__, "../assets/transcribe.mp3")) ``` The file parameter is used to create the Audio.Transcription request structure ```elixir transcription_req = Audio.Transcription.new(file: audio_file, model: "whisper-1") ``` We then call the [`Audio.Transcription.create()`](https://platform.openai.com/docs/api-reference/audio/createTranscription) function to create a transcription. ```elixir {:ok, transcription_response} = openai |> Audio.Transcription.create(transcription_req) ``` ### Create translation The translation call uses practically the same request structure, but calls the [`Audio.Translation.create()`](https://platform.openai.com/docs/api-reference/audio/createTranslation) endpoint For more information on the audio endpoints see the [Openai API Audio Reference](https://platform.openai.com/docs/api-reference/audio) ## File ### List files To request all files that belong to the user organization, call the [`File.list()`](https://platform.openai.com/docs/api-reference/files/list) function ```elixir alias OpenaiEx.Files openai |> Files.list() ``` ### Upload files To upload a file, we need to create a file parameter, and then the upload request ```elixir # if you're having problems downloading raw github content, you may need to manually set your DNS server to "8.8.8.8" (google) ftf_url = "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/fine-tune.jsonl" fine_tune_file = OpenaiEx.new_file(name: ftf_url, content: fetch_blob.(ftf_url)) # fine_tune_file = OpenaiEx.new_file(path: Path.join(__DIR__, "../assets/fine-tune.jsonl")) upload_req = Files.new_upload(file: fine_tune_file, purpose: "fine-tune") ``` Then we call the [`File.create()`](https://platform.openai.com/docs/api-reference/files/upload) function to upload the file ```elixir {:ok, upload_res} = openai |> Files.create(upload_req) ``` We can verify that the file has been uploaded by calling ```elixir openai |> Files.list() ``` We grab the file id from the previous response value to use in the following samples ```elixir file_id = upload_res["id"] ``` ### Retrieve files In order to retrieve meta information on a file, we simply call the [`File.retrieve()`]() function with the given id ```elixir openai |> Files.retrieve(file_id) ``` ### Retrieve file content Similarly to download the file contents, we call [`File.content()`]() ```elixir openai |> Files.content(file_id) ``` ### Delete file Finally, we can delete the file by calling [`File.delete()`](https://platform.openai.com/docs/api-reference/files/delete) ```elixir openai |> Files.delete(file_id) ``` Verify that the file has been deleted by listing files again ```elixir openai |> Files.list() ``` ## FineTuning Job To run a fine-tuning job, we minimally need a training file. We will re-run the file creation request above. ```elixir {:ok, upload_res} = openai |> Files.create(upload_req) ``` Next we call `FineTuning.Jobs.new()` to create a new request structure ```elixir alias OpenaiEx.FineTuning ft_req = FineTuning.Jobs.new(model: "gpt-4o-mini-2024-07-18", training_file: upload_res["id"]) ``` To begin the fine tune, we call the [`FineTuning.Jobs.create()`](https://platform.openai.com/docs/api-reference/fine-tunes/create) function ```elixir {:ok, ft_res} = openai |> FineTuning.Jobs.create(ft_req) ``` We can list all fine tunes by calling [`FineTuning.Jobs.list()`](https://platform.openai.com/docs/api-reference/fine-tunes/list) ```elixir openai |> FineTuning.Jobs.list() ``` The function [`FineTune.retrieve()`](https://platform.openai.com/docs/api-reference/fine-tunes/retrieve) gets the details of a particular fine tune. ```elixir ft_id = ft_res["id"] openai |> FineTuning.Jobs.retrieve(fine_tuning_job_id: ft_id) ``` and [`FineTuning.Jobs.list_events()`](https://platform.openai.com/docs/api-reference/fine-tunes/events) can be called to get the events ```elixir openai |> FineTuning.Jobs.list_events(fine_tuning_job_id: ft_id) ``` To cancel a Fine Tune job, call [`FineTuning.Jobs.cancel()`](https://platform.openai.com/docs/api-reference/fine-tunes/cancel) ```elixir openai |> FineTuning.Jobs.cancel(fine_tuning_job_id: ft_id) ``` A fine tuned model can be deleted by calling the [`Model.delete()`](https://platform.openai.com/docs/api-reference/fine-tunes/delete-model) ```elixir ft_model = ft_res["fine_tuned_model"] unless is_nil(ft_model) do openai |> Models.delete(ft_model) end ``` For more information on the fine tune endpoints see the [Openai API Moderation Reference](https://platform.openai.com/docs/api-reference/fine-tunes) ## Batch ```elixir alias OpenaiEx.Batches ``` ### Create batch Use the [`Batch.create()`](https://platform.openai.com/docs/api-reference/batches/createBatch) function to create and execute a batch from an uploaded file of requests. First, we need to upload a file containing the batch requests using the `File` API. ```elixir batch_url = "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/batch-requests.jsonl" batch_file = OpenaiEx.new_file(name: batch_url, content: fetch_blob.(batch_url)) # batch_file = OpenaiEx.new_file(path: Path.join(__DIR__, "../assets/batch-requests.jsonl")) batch_upload_req = Files.new_upload(file: batch_file, purpose: "batch") {:ok, batch_upload_res} = openai |> Files.create(batch_upload_req) ``` Then, we create the batch request using `Batch.new()` and specify the necessary parameters. ```elixir batch_req = Batches.new( input_file_id: batch_upload_res["id"], endpoint: "/v1/chat/completions", completion_window: "24h" ) ``` Finally, we call the [`Batch.create()`](https://platform.openai.com/docs/api-reference/batch/create) function to create and execute the batch. ```elixir {:ok, batch} = openai |> Batches.create(batch_req) ``` ### Retrieve batch Use the [`Batch.retrieve()`](https://platform.openai.com/docs/api-reference/batch/retrieve) function to retrieve information about a specific batch. ```elixir batch_id = batch["id"] {:ok, batch_job} = openai |> Batches.retrieve(batch_id: batch_id) ``` ```elixir batch_job_output_file_id = batch_job["output_file_id"] {:ok, batch_job_output_file} = openai |> Files.retrieve(batch_job_output_file_id) ``` ```elixir {status, batch_result} = batch_output_content = openai |> Files.content(batch_job_output_file["id"]) ``` Note that the string is not valid json (it's a sequence of json objects without the commas or the array '[' ']' delimiters), so it cannot be parsed as such. <!-- livebook:{"break_markdown":true} --> ### Cancel batch Use the [`Batch.cancel()`](https://platform.openai.com/docs/api-reference/batch/cancel) function to cancel an in-progress batch. ```elixir {status, cancel_result} = openai |> Batches.cancel(batch_id: batch_id) ``` ### List batches Use the [`Batch.list()`](https://platform.openai.com/docs/api-reference/batch/list) function to list your organization's batches. ```elixir openai |> Batches.list() ``` For more information on the Batch API, see the [OpenAI API Batch Reference](https://platform.openai.com/docs/api-reference/batch). ## Moderation We use the moderation API by calling `Moderation.new()` to create a new request ```elixir alias OpenaiEx.Moderations mod_req = Moderations.new(input: "I want to kill people") ``` The call the function [`Moderation.create()`](https://platform.openai.com/docs/api-reference/moderations/create) ```elixir mod_res = openai |> Moderations.create(mod_req) ``` For more information on the moderation endpoints see the [Openai API Moderation Reference](https://platform.openai.com/docs/api-reference/moderations) ## Assistant ```elixir alias OpenaiEx.Beta.Assistants ``` ### Create Assistant To create an assistant with model and instructions, call the [`Assistant.create()`](https://platform.openai.com/docs/api-reference/assistants/createAssistant) function. First, we setup the create request parameters. This request sets up an Assistant with a code interpreter tool. ```elixir hr_assistant_req = Assistants.new( instructions: "You are an HR bot, and you have access to files to answer employee questions about company policies.", name: "HR Helper", tools: [%{type: "file_search"}], model: "gpt-4o-mini" ) ``` Then we call the create function ```elixir {:ok, asst} = openai |> Assistants.create(hr_assistant_req) ``` ### Retrieve Assistant Extract the id field for the assistant ```elixir assistant_id = asst["id"] ``` which can then be used to retrieve the Assistant fields, using the [`Assistant.retrieve()`](https://platform.openai.com/docs/api-reference/assistants/getAssistant) function. ```elixir openai |> Assistants.retrieve(assistant_id) ``` ### Modify Assistant Once created, an assistant can be modified using the [`Assistant.update()`](https://platform.openai.com/docs/api-reference/assistants/modifyAssistant) function. Now we will show an example assistant request using the retrieval tool with a set of files. First we set up the files (in this case a sample HR document) by uploading using the `File` API. ```elixir alias OpenaiEx.Files # hr_file = OpenaiEx.new_file(path: Path.join(__DIR__, "../assets/cyberdyne.txt")) hrf_url = "https://raw.githubusercontent.com/restlessronin/openai_ex/main/assets/cyberdyne.txt" hr_file = OpenaiEx.new_file(name: hrf_url, content: fetch_blob.(hrf_url)) hr_upload_req = Files.new_upload(file: hr_file, purpose: "assistants") {:ok, hr_upload_res} = openai |> Files.create(hr_upload_req) ``` ```elixir file_id = hr_upload_res["id"] ``` Next we create the update request ```elixir math_assistant_req = Assistants.new( instructions: "You are a personal math tutor. When asked a question, write and run Python code to answer the question.", name: "Math Tutor", tools: [%{type: "code_interpreter"}], model: "gpt-4o-mini", tool_resources: %{code_interpreter: %{file_ids: [file_id]}} ) ``` Finally we call the endpoint to modify the `Assistant` ```elixir {:ok, asst} = openai |> Assistants.update(assistant_id, math_assistant_req) ``` ### Delete Assistant Finally we can delete assistants using the [`Assistant.delete()`](https://platform.openai.com/docs/api-reference/assistants/deleteAssistant) function ```elixir openai |> Assistants.delete(assistant_id) ``` ### List Assistants We use [`Assistant.list()`](https://platform.openai.com/docs/api-reference/assistants/listAssistants) to get a list of assistants ```elixir assts = openai |> Assistants.list() ``` ## Vector Stores ```elixir alias OpenaiEx.Beta.VectorStores alias OpenaiEx.Beta.VectorStores.Files alias OpenaiEx.Beta.VectorStores.File.Batches ``` ### Create vector store Use [`VectorStores.create()`](https://platform.openai.com/docs/api-reference/vector-stores/create) to create a vector store. ```elixir vector_store_req = VectorStores.new(name: "HR Documents") {:ok, vector_store} = openai |> VectorStores.create(vector_store_req) vector_store_id = vector_store["id"] ``` ### Retrieve vector store Use [`VectorStores.retrieve()`](https://platform.openai.com/docs/api-reference/vector-stores/retrieve) to retrieve a vector store. ```elixir openai |> VectorStores.retrieve(vector_store_id) ``` ### Update vector store Use [`VectorStores.update()`](https://platform.openai.com/docs/api-reference/vector-stores/modify) to modify the vector store. ```elixir openai |> VectorStores.update(vector_store_id, %{name: "HR Documents 2"}) ``` ### Delete vector store [`VectorStores.delete()`](https://platform.openai.com/docs/api-reference/vector-stores/delete) can be used to delete a vector store. ```elixir openai |> VectorStores.delete(vector_store_id) ``` ### List vector stores We use [`VectorStores.list()`](https://platform.openai.com/docs/api-reference/vector-stores/list) to get a list of vectorstores. ```elixir openai |> VectorStores.list() ``` ## Vector Store Files ### Create vector store file We can create a vector store file by attaching a file to a vector store using [`VectorStores.Files.create()`](https://platform.openai.com/docs/api-reference/vector-stores-files/createFile). First we recreate the vector store above ```elixir {:ok, vector_store} = openai |> VectorStores.create(VectorStores.new(name: "HR Documents")) ``` then attach the file id from earlier ```elixir vector_store_id = vector_store["id"] {:ok, vs_file} = openai |> VectorStores.Files.create(vector_store_id, file_id) ``` ### Retrieve vector store file Retrieve a vector store file using the [`VectorStores.Files.retrieve()`](https://platform.openai.com/docs/api-reference/vector-stores-files/getFile) function ```elixir openai |> VectorStores.Files.retrieve(vector_store_id, file_id) ``` ### Delete vector store file Detach a file from the vector store using [`VectorStores.Files.delete()`](https://platform.openai.com/docs/api-reference/vector-stores-files/deleteFile) ```elixir openai |> VectorStores.Files.delete(vector_store_id, file_id) ``` ### List vector store files List vector store files using [`VectorStores.Files.list()`](https://platform.openai.com/docs/api-reference/vector-stores-files/listFiles) ```elixir openai |> VectorStores.Files.list(vector_store_id) ``` ## Vector Store File Batches File batches allow addition of multiple files to a vector store in a single operation. ### Create VS file batch Use [`VectorStores.File.Batch.create()`](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/createBatch) to attach a list of file ids to a vector store. ```elixir {:ok, vsf_batch} = openai |> VectorStores.File.Batches.create(vector_store_id, [file_id]) ``` ### Retrieve VS file batch Use [`VectorStores.File.Batch.retrieve()`](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/getBatch) to retrieve the batch. ```elixir vsf_batch_id = vsf_batch["id"] openai |> VectorStores.File.Batches.retrieve(vector_store_id, vsf_batch_id) ``` ### Cancel VS file batch Use [`VectorStores.File.Batches.cancel()`](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/cancelBatch) to cancel a batch. ```elixir openai |> VectorStores.File.Batches.cancel(vector_store_id, vsf_batch_id) ``` ### List VS file batch Use [`VectorStores.File.Batches.list()`](https://platform.openai.com/docs/api-reference/vector-stores-file-batches/listBatchFiles) ```elixir openai |> VectorStores.File.Batches.list(vector_store_id, vsf_batch_id) ``` ## Thread ```elixir alias OpenaiEx.Beta.Threads alias OpenaiEx.Beta.Threads.Messages ``` ### Create thread Use the [`Thread.create()`] function to create threads. A thread can be created empty or with messages. ```elixir {:ok, empty_thread} = openai |> Threads.create() msg_hr = Messages.new( role: "user", content: "What company do we work at?", attachments: [%{file_id: file_id, tools: [%{type: "file_search"}]}] ) msg_ai = Messages.new(role: "user", content: "How does AI work? Explain it in simple terms.") thrd_req = Threads.new(messages: [msg_hr, msg_ai]) {:ok, thread} = openai |> Threads.create(thrd_req) ``` ### Retrieve thread [`Thread.retrieve()`](https://platform.openai.com/docs/api-reference/threads/getThread) can be used to get the thread parameters given the id. ```elixir thread_id = thread["id"] openai |> Threads.retrieve(thread_id) ``` ### Modify thread The metadata for a thread can be modified using [`Thread.update()`](https://platform.openai.com/docs/api-reference/threads/modifyThread) ```elixir openai |> Threads.update(thread_id, %{metadata: %{modified: "true", user: "abc123"}}) ``` ### Delete thread Use [`Thread.delete()`](https://platform.openai.com/docs/api-reference/threads/deleteThread) to delete a thread ```elixir openai |> Threads.delete(thread_id) ``` Verify deletion ```elixir openai |> Threads.retrieve(thread_id) ``` ## Messages ### Create message You can create a single message for a thread using [`Message.create()`](https://platform.openai.com/docs/api-reference/messages/createMessage) ```elixir thread_id = empty_thread["id"] {:ok, message} = openai |> Threads.Messages.create(thread_id, msg_hr) ``` ### Retrieve message Use [`Message.retrieve()`] to retrieve a message ```elixir message_id = message["id"] openai |> Threads.Messages.retrieve(%{thread_id: thread_id, message_id: message_id}) ``` ### Modify message The metadata for a message can be modified by [`Message.update()`] ```elixir metadata = %{modified: "true", user: "abc123"} upd_msg_req = Threads.Messages.new(thread_id: thread_id, message_id: message_id, metadata: metadata) {:ok, message} = openai |> Threads.Messages.update(upd_msg_req) ``` ### List messages Use [`Message.list()`] to get all the messages for a given thread ```elixir openai |> Threads.Messages.list(thread_id) ``` ## Runs ```elixir alias OpenaiEx.Beta.Threads.Runs ``` ### Create run A run represents an execution on a thread. Use to [`Run.create()`](https://platform.openai.com/docs/api-reference/runs/createRun) with an assistant on a thread ```elixir {:ok, math_assistant} = openai |> Assistants.create(math_assistant_req) math_assistant_id = math_assistant["id"] run_req = Runs.new(thread_id: thread_id, assistant_id: math_assistant_id) {:ok, run} = openai |> Runs.create(run_req) ``` #### Streaming It is possible to stream the result of executing a run or resuming a run after submitting tool outputs. To accomplish this, pass `stream: true` to the `create`, `create_thread_and_run` and `submit_tool_outputs` functions. ```elixir {:ok, run_stream} = openai |> Runs.create(run_req, stream: true) IO.puts(inspect(run_stream)) IO.puts(inspect(run_stream.task_pid)) run_stream.body_stream |> Stream.flat_map(& &1) |> Enum.each(fn x -> IO.puts(inspect(x)) end) ``` ### Retrieve run Retrieve a run using [`Run.retrieve()`](https://platform.openai.com/docs/api-reference/runs/getRun) ```elixir run_id = run["id"] openai |> Runs.retrieve(%{thread_id: thread_id, run_id: run_id}) ``` ### Modify run The run metadata can be modified using the [`Run.update()`](https://platform.openai.com/docs/api-reference/runs/modifyRun) function ```elixir openai |> Runs.update(%{ thread_id: thread_id, run_id: run_id, metadata: %{user_id: "user_zmVY6FvuBDDwIqM4KgH"} }) ``` ### List runs List the runs belonging to a thread using [`Run.list()`](https://platform.openai.com/docs/api-reference/runs/listRuns) ```elixir # Basic usage openai |> Runs.list([ thread_id: thread_id ]) # With optional parameters openai |> Runs.list([ thread_id: thread_id, limit: 10, order: "desc", include: ["run_steps"] ]) ``` ### Submit tool outputs to a run When a run has the `status`: "requires_action" and `required_action.type` is `submit_tool_outputs`, the [`Run.submit_tool_outputs()`](https://platform.openai.com/docs/api-reference/runs/submitToolOutputs) can be used to submit the outputs from the tool calls once they're all completed. All outputs must be submitted in a single request. ```elixir openai |> Runs.submit_tool_outputs(%{ thread_id: thread_id, run_id: run_id, tool_outputs: [%{tool_call_id: "foobar", output: "28C"}] }) ``` ### Cancel a run You can cancel a run `in_progress` using [`Run.cancel()`](https://platform.openai.com/docs/api-reference/runs/cancelRun) ```elixir openai |> Runs.cancel(%{thread_id: thread_id, run_id: run_id}) ``` ### Create thread and run Use [`Run.create_and_run()`](https://platform.openai.com/docs/api-reference/runs/createThreadAndRun) to create a thread and run. ```elixir ```
See source

Have you already installed Livebook?

If you already installed Livebook, you can configure the default Livebook location where you want to open notebooks.
Livebook up Checking status We can't reach this Livebook (but we saved your preference anyway)
Run notebook

Not yet? Install Livebook in just a minute

Livebook is open source, free, and ready to run anywhere.

Run on your machine

with Livebook Desktop

Run in the cloud

on select platforms

To run on Linux, Docker, embedded devices, or Elixir’s Mix, check our README.

PLATINUM SPONSORS
SPONSORS
Code navigation with go to definition of modules and functions Read More ×